Computer Aided Manufacturing

Dr.S.RAMABALAN, PRINCIPAL, E.G.S. PILLAY ENGINEERING COLLEGE, NAGAPATTINAM.

Cleansing through Breathing

Recap and review of previous class

Unit III

PROGRAMMING OF CNC LATHE

Coordinate system - structure of a part program -G & M Codes -Programming for FANUC and SIEMENS controller -Single pass and canned cycle -Turning, facing and threading -Multi-pass canned cycle -Rough and Finish turning, facing, pattern repeating, grooving, threading, drilling, boring, peck drilling, high speed drilling cycle -Subprogram and Macro programming -Tool length and nose radius compensation - offset -Tool, work and coordinate -Insert -Materials, Classification, Nomenclature and Selection -Tool and Work holding devices -Automatic tool changer -Turret and drum type -Tool holder nomenclature and selection -CNC part programming using CAD/CAM software and interfacing with CNC machines 4

Prerequisite Knowledge

• Metal cutting processes

3.EVOCATION

4. GENERAL OBJECTIVE (GO)

Students will be able to apply the knowledge to create CNC part program for circular components with canned cycles.

5. SPECIFIC OBJECTIVE (SO) MAPPED WITH STEM

The students will be able to

- 1. Label the canned cycles used in CNC lathe programing with their syntax. (R-F) (E)
- 2. Explain the function and application areas of canned cycles (G70-G76). (U-C) (E)
- 3. Select the suitable canned cycles for CNC part programming of given component and construct part program for same component. (Ap-C) (E)

MULTIPLE REPETITIVE CANNED CYCLE (G70-G76)

- 1. Roughing cycle (G71)
- 2. Facing cycle (G72)
- 3. Pattern repeating cycle (G73)
- 4. Finishing cycle (G70)
- 5. Peck drilling cycle (G74)
- 6. Grooving cycle (G75)
- 7. Threading cycle (G76)

STOCK REMOVAL CYCLE (G71)

- Also called as roughing cycle
- The material will be removed when the tool moves parallel to the spindle axis
- Since it is a roughing cycle, the material removal rate will be more
- In this cycle, small amount of material is retained on the work piece which will be removed laterby finishing cycle

FINISHING CYCLE (G70)

- In this cycle, the excess material is removed which was retained during previous operations
- This cycle will be used at the end of roughing, facing and pattern repeating cycles
- since it is a finishing operation, the material removal rate will be less

G70 P Q

G70 - FINISH TURN CYCLEP - LINE NUMBER AT START OF SUBOUTINEQ - LINE NUMBER AT END OF SUBROUTINE

G71 Roughing Cycle

G71 U1.0 R1.0; G71 P100 Q200 U0.2 W.05 F0.2

G71	- ROUGHING CYCLE
U1.0 (U) - DEPTH OF CUT
R1.0	- RETRACT VALUE
P100	- FIRST LINE OF SUBROUTINE
Q200	- LAST LINE OF SUBROUTINE
U0.2 (U) - AMOUNT LEFT ON FOR FINISHING IN X
W0.05	- AMOUNT LEFT ON FOR FINISHING IN Z
F0.2	- FEED RATE

Roughing Cycle G71 & Finishing Cycle G70

Stock Removal (Roughing Cycle)

G71 U__ R__

U= DEPTH OF CUT PER PASS IN X AXIS R= RELIEF AMOUNT AFTER EACH PASS

G71 P__ Q__ U__ W__ F__

P= PROFILE STARTING BLOCK NUMBER

Q= PROFILE END BLOCK

NUMBER

- U= FINISHING ALLOWANCE IN X AXIS
- W= FINISHING ALLOWANCE IN Z AXIS
- F= FEED RATE

Finishing cycle **G70** P __ Q __ P= PROFILE STARTING BLOCK NUMBER Q= PROFILE END BLOCK NUMBER Example

- 00006;
- N10 G21 G99;
- N20 G28 UO W0;
- N30 TO101;
- N40 S1250 M03;
- N50 G00 X161.0;
- N60 G00 Z0.0;
- N70 G01 X-1.0F0.3;
- N80 G00 Z2.0;
- N90 G00 X161.0;
- N100 G00 Z0.0;
- N110 G71 U2.0 R1.0;
- N120 G71 P130 Q180 U0.25 W0.2 F0.3;
- N130 G01 X40 F0.3;
- N140 G01 X80 Z-20 F0.5;
- N150 Z-40;
- N160 X120 Z-50;
- N170 Z-60;
- N180 X160 Z-70;
- N190 G70 P130 Q180;
- N200 G28 U0 W0 ;
- N210 M05;
- N220 M30;

GCodeTutor

G72 - Facing cycle W0.8 - Depth of cut R2.0 - Retract value P200 - Start of subroutine Q300 - End of subroutine U1.0 - Finish allowance in X W0.5 - Finish allowance in Z F0.2 - Feedrate

Z -

Lathe – Facing Cycle G72

- In this cycle, material will be removed when the tool moves perpendicular to spindle axis over
- Here, the material removal rate is more
- Small amount of material is retained in the work piece which will be removed later during finishing cycle

Stock removal (Facing cycle)

G72 W__ R__ G72 P__ Q__ U__ W__ F__ S___ T___

W = DEPTH OF CUT PER PASS IN Z AXIS R = RELIEF AMOUNT AFTER EACH PASS

 $\begin{array}{l} \mathsf{P} = \mathsf{PROFILE} \ \mathsf{STARTING} \ \mathsf{BLOCK} \ \mathsf{NUMBER} \\ \mathsf{Q} = \mathsf{PROFILE} \ \mathsf{ENDING} \ \mathsf{BLOCK} \\ \mathsf{U} = \mathsf{FINISHING} \ \mathsf{ALLOWANCE} \ \mathsf{IN} \ \mathsf{X} \ \mathsf{AXIS} \\ \mathsf{W} = \mathsf{FINISHING} \ \mathsf{ALLOWANCE} \ \mathsf{IN} \ \mathsf{Z} \ \mathsf{AXIS} \\ \mathsf{F} = \mathsf{FEED} \ \mathsf{RATE} \\ \mathsf{S} = \mathsf{Spindle} \ \mathsf{Speed} \\ \mathsf{T} = \mathsf{Tool} \ \mathsf{SELECTION} \end{array}$

Canned Cycle – G72 &G70 (Facing)

PATTERN REPEATING CYCLE (G73)

- In this cycle, the tool traces the pattern repeatedly and removes a part of material during each repeat
- The number of traces (repeats) are programmed in the cycle.
- Small amount of material is retained in the work piece which will be removed later during finishing cycle

Format of Pattern Repeating Cycle - G73

G73 U_W_ R_ G73 P_ Q_ U_ W_ F_

U = Distance and Direction of Relief in X Direction
 W = Distance and Direction of Relief in Z Direction
 R = The Number of Division (Number Of Passes)

P = Profile Starting Block Number
Q = Profile Ending Block Number
U = Finishing Allowance in X Axis
W = Finishing Allowance in Z Axis
F = Feed Rate

Example

(Diameter designation, metric input)

PECK DRILLING CYCLE (G74)

FORMAT OF PECK DRILLING CYCLE

- G74 R_;
- G74 Z__ Q__ F__;
- R = RELIEF AMOUNT AFTER EACH PASS
- Z = FINAL DRILLING DEPTH
- Q = DEPTH OF CUT PER EACH PASS IN MICRON
- F = FEED RATE

In this cycle, the drilling of total depth will be done by repeated steps. During each step, a part of the total depth (Q) will be drilled

EXAMPLE FOR DRILLING CYCLE

Canned Cycle – G74 (Peck Drilling)

- 00010:
- N10 G21 G99;
- N20 G28 UO W0;
- N30 TO3O3; (15mm Ødrill)
- N40 S1250 M03;
- N50 G00 X0.0;
- N60 Z2.0;
- N70 G74 R2.0;
- N80 G74 Z-40.0 Q8000 F0.3;
- N90 G28 U0 W0;
- N100 M05;
- N110 M30;

GROOVING CYCLE (G75)

FORMAT OF GROOVING CYCLE

G75 R_; G75 X_Z_P_Q_F_;

- R = RELIEFAMOUNT
- X = FINAL VALUE OF X AT THE END OF GROOVING
- Z = FINAL VALUE OF Z AT THE END OF GROOVING
- P = DEPTH OF CUT PER EACH PASS (MICRON)
- Q = SHIFTING DISTANCE IN Z AXIS (MICRON)
- F = FEED RATE

In this cycle,

1. The material of total depth will be removed by repeated steps in X axis.

2. Then the tool is shifted in Z axis for a specified distance

The steps 1 and 2 will be repeated until the groove completion

GROOVING CYCLE (G75)

- N10 G21 G99;
- N20 G28 UO W0;
- N30 T0404; (Grooving Tool)
- N40 S1250 M03;
- N50 G00 X41.0;
- N60 Z-40.0;
- N70 G75 R1.0;
- N80 G75 X30.0 Z-70.0 P1000 Q5000 F0.3;
- N90 G28 U0 W0;
- N100 M05;
- N110 M30;

Format of Threading Canned Cycle - G76

G76 P 00 00 00 Q R

G76 X Z P Q F

- P 00 = Number of finishing passes
 - 00 = Chamfer distance multiplication factor
 - 00 = Included angle
- Q = Minimum depth of cut (Micron)
- R = Finishing allowance
- X = Minor diameter of the thread
- Z = The value of Z at the end of the thread
- P = Height of thread (Micron)
- Q = First depth of cut (Micron)
- F = Pitch

G80 X80.0 Z130.0; G76 P011060 Q100 R200 ; G76 X60.64 Z25.0 P3680 Q1800 F6.0 ;

THREADING CYCLE (G76)

Thread specification :

M40x2P

- ➔ Major Dia = 40 mm
- \rightarrow Pitch = 2 mm
- → Minor Dia = Major Dia -2x depth of thread
- → Dept of thread =0.6315 x pitch = 1.2630mm

Hence Minor Dia = 37.474 (Included angle for metric thread is 60 Deg)

		1			
•	00014	 N210 TO2O2 ;(Grooving Tool) 			
•	N10 G21 G99;	 N220 S1500 M03; 			
•	N20 G28 U0 WO;	 N230 G00 X41.0; 			
•	N30 TO1O1;(Turning Tool)	 N240 Z-40.0; 			
•	N40 S1500 M0;	 N250 G75 R1.0; 			
٠	N50 G00 X81.0; (Facing)	 N260 G75 X30.0 Z-70.0 P1000 	Φ60		
•	N60 Z0.0;	Q1000 F0.3;			M40*2P
٠	N70 G01 X-1.0 F0.5;	• N270 G28 U0 W0 ;		+++	1140 21
•	N80 Z2.0;	 N280 MO5; 		Φ30	
•	N90 G00 X80;	N290 T0303: (Drilling Cycle)		-	
•	N100 Z0.0;	 N300 S1500 M03; 			
•	N110 G71 U2.0 R1.O; (Rough	• N310 G00 X0.0:			
	turning Cycle)	• N320 72-0:			
٠	N120 P130 Q170 U0.3 W0.2 F0.3;	• N330 G74 R2.0:			
٠	N130 G01 X40.0 F0.3;	• N340 G74 7-50 0 08000 F0 3			
٠	N140 Z-70.0;	 N350 G28 U0 W0: 			
•	N150 X60.0;	• N360 M05			
٠	N160 Z-110.0;	N370 T0303·(Threading Cycle)	40	30	40
٠	N170 X80.0;	 N380 \$1200 M03. 			-
•	N180 G70 P130 Q170; (Finishing	• N390 G00 X41 0			
	Cycle)	• N/00 7-/0 0:			
•	N190 G28 U0W0;	• N410 C01 X40 0 E0 2:			
•	N200 M05;	 N410 G01 X40.0 F0.3, N420 G76 P020860 O100 P0.01. 			
		 N420 G70 P020800 Q100 R0.01, N420 C76 Y27 474 70 0 D1262 			
		• N450 G/0 X57.474 20.0 P1205			
		• N460 G28 U0 W0;			
		• N4/0 M05;			29
		 N480 M30; 			

CNCEZ TURNING - IV

CNCEZ THREAD CUTTING SPECIMEN DRAWING

ALL DIMENSIONS ARE IN Inches

Program:

:%

: 1004

N05 G90 G20

N10 M03 S1500

N15 M06 T01

N20 G00 X0 Z0

N25 G01 X1.5 Z0 F10

N30 G01 X1.5 Z-2

N35 G01 X2.0 Z-2

N40 G00 X1.5 Z2

N45 M06 T03

N50 G00 X1.5 Z0

N55 G76 X1.5 Z-1.8 D625 K.125 A45 F0.1

N60 G00 X2 Z2

N65 M06 T12

N70 G00 X0 Z0

N75 G74 X0 Z-1 F1 D0 I0.25 K.125

N80 G00 Z1

N85 M05

N90 M30

Common G-Code for Lathe

G77 X Z Q R F ;

Canned cycles (side turning) , (X,Z) – end point coordinate, Q – depth of each cut, R – depth of taper, F – feedrate

straight side turning: X, Z, F

roughing cuts: X, Z, Q, F

making tapers: X, Z, Q, R, F

G80;

Cancel a canned cycle, and resume normal operation (G00 or G01 can also cancel canned cycles)

Canned cycle side turning: N001 G01 X1.0 Z-1.0 F10 N002 G77 X0.6 Z-3.0 Q0.1 F10 N003 G80

X,Z are end point coordinates, Q is depth of each cut

Canned cycle side turning with taper: N011 G01 X1.0 Z-1.0 F10; Taper start point N012 G77 X1.0 Z-3.0 Q0.1 R-0.4 F10; Taper end point N013 G80 ;R is depth of taper, negative values for positive taper

Canned cycle side turning with taper: N011 G01 X1.0 Z-1.0 F10; Taper start point N012 G77 X0.6 Z-3.0 Q0.1 R0.4 F10; Taper end point N013 G80 ;R is depth of taper, positive values for negative taper

Rough Cut

Roughing – primary considerations:

- > Just removing metal, surface finish does not matter.
- Requires a strong cutter.
- Generally have deep depth of cuts and fast feed rates.
- The cutting speed is generally adjusted slower to keep heat down.
- Finishing primary considerations:
 - Must meet required surface finish and size specifications.
 - Requires a hard cutter to hold its shape well.
 - Generally have small depth of cuts and slow feed rates.
 - The cutting speed is generally adjusted upward to give a better surface finish.

Program 2 – Step Turning using G90 cycle

- 00002;
- N010 G21 G40 G98;
- N020 G28 U0 W0;
- N030 M06 T01;
- N040 M03 S1200;
- N050 G00 X21 Z2;
- N060 G90 X20 Z-30 F60;
- N070 X19;
- N080 X18;
- N090 X17;
- N100 X16;
- N110 X15;
- N120 X14;
- N130 X13;
- N140 X12;
- N150 X11;
- N160 X10;
- N170 G28 U0 W0;
- N180 M05;
- N190 M30;

//* Box turning cycle * //

Program 3 - TAPER TURNING

- 00011
- N010 G21 G40 G98
- N020 G28 U0 W0
- N030 M06 T01
- N040 M03 S1200
- N050 G00 X21 Z2
- G90 X20 Z-40 R0 F60
- N070 X20 R-0.5
- N080 X20 R-1
- N090 X20 R-1.5
- N100 G28 U0 W0
- N110 M05
- N120 M30

//* Box turning cycle *// R = (Minor dia) / 2 = (17 - 20) /2 = -3/2 = - 1.5

Program 4 - Step Facing Cycle (G94)

- 00015
- N010 G21 G40 G98
- N020 G28 U0 W0
- N030 M06 T05
- N040 M03 S1200
- N050 G00 X21 Z2
- N060 G94 X10 Z-1 F60
- N070 Z-2
- N080 Z-3
- N090 Z-4
- N100 Z-5
- N110 G28 U0 W0
- N120 M05
- N130 M30

Concept Map

Discussion

